Requirements for Improved Detectors in Macromolecular Crystallography

Robert M. Sweet **Biology Department** Brookhaven

Important players in **Synchrotron Detectors**

- Uli Arndt, Cambridge, UK Invented the modern Rotation Method, which is how we take data. Pushed video detectors. Conceived first commercial synchrotron detector
- Jules Hendrix, Hamburg Commercialized an automated imaging-plate camera
- George Reynolds, Sol Gruner, Princeton Parallel video developments. Moved to CCD work.
- Michael Strauss, Ed Westbrook, Steve Naday, Argonne Large array CCD-based detectors
- Walter Phillips, Marty Stanton, Brandeis Important mechanical and electronic advances
- Ron Hamlin, Chris Nielsen Commercialized large-array detectors
- The multi-wire Guys: Perez-Mendez, Xuong, Hamlin, Charpak,

What are the goals of the crystallographic experiment?

Bring all Bragg planes into diffracting position

Integrate the diffraction intensity from each Bragg reflection

- Through the crystal rocking curve
- Over the reflection area on the detector face

To accomplish this

- Read out detector frequently as the crystal rotates
- Resolve spots on the surface of the x-ray detector

Here's an example of a difficult problem!

The longest unit-cell edge is 570Å in this photo from crystals of the 50S ribosomal subunit.

Let's look at it in detail:

The challenge for the Detector Maker:

One needs to measure data like these quickly, without adding width or noise to the spot.

Ban, et al. Call 1906

The 50S Subunit

When it works, the payoff is great. This is a simplified cartoon of the 100,000 atoms in the 50S subunit of the ribosome.

What are the issues in detector specification?

- Individual diffraction spots must be sampled finely, and they must not overlap (small point spread)
- No extraneous noise may be added to the intensity measurement
- Readout must be quick
- The dynamic range of measurement must be large

Quantitate the advantage of small point-spread and low detector noise

- We have: I = S B
- Standard error propagation gives $\sigma_{I}^{2} = \sigma_{S}^{2} + \sigma_{B}^{2}$
- Since I, B, and S all are counts, $\sigma_S^2 = S$, $\sigma_B^2 = B$
- This gives: $I / \sigma_I = (S B) / (S + B)^{1/2}$

a...... a.

Evaluate Detective Quantum Efficiency (DQE) for an Integrated Intensity

$$\epsilon = \frac{\left(\frac{I}{\sigma}\right)^2_{out}}{\left(\frac{I}{\sigma}\right)^2_{i-1}} = \left(\frac{I/(S+B)^{1/2}}{\sqrt{I}}\right)^2 = \frac{I}{S+B} = \frac{I}{I+2B}$$

So any change in an experimental system that decreases B, whether it's by *keeping detector noise low* or *keeping reflections sharp*, improves the efficiency of this system.

Sanitara Bries

Now let's look at how the detectors we use have evolved

X-Ray Film as a Detector

Many crystal structures were solved with the Rotation Method of data collection on film.

Good points:

- Inexpensive when that seemed important
- Pretty linear
- Excellent spatial resolution

Bad points:

- Poor dynamic range
- Extremely inconvenient

Messing with an Arnal/Wonacott Rotation Came

Early Argonne CCD detector

Shown being tested at NSLS beamline X12-C in 1987.

Light chain is:

- Phosphor
- 115:40mm fiberoptic taper.
- · 2-stage image intensifier
- f 1.0 Lens
- Tektronics 512x512 CCD

Early Brandeis CCD detector

Shown while being tested at BNL in early 1989.

Its (folded) light chain is:

- · Phosphor converter
- 75mm image intensifier
- 75:38mm fiberoptic taper
- 40mm image intensifier
- 38:18mm fiberoptic taper
- Mirror
- 50mm f 2 macro lens
- 1.3k x 1.0k Kodak CCD (7 micron-pixels).

Angle on the rotation camera at X/2-0

Sustan Side

The Nonius/Arndt FAST detector

Installed at BNL late 1989

It has a phosphor on an image intensifier, a fibre-optic taper, and a Silicon-Intensifier-Target video tube.

Good points:

- Single-photon counting
- Single-photon country
 100% duty cycle
- Nearly the first automatic data-collection system.

Bad points:

- · Narrow dynamic range
- Few pixels.

Sudday Su

The most successful synchrotron detectors have been the MAR imaging-plate systems

Good points:

- · Fairly efficient
- · Quicker than Film
- Many pixels relatively inexpensively
- One of the first automatic data-collection systems

Bad points:

- Slow readout
- Not really efficient
- · Only decent point spread

The MAR300 detector on the FAST diffractometer at X12-C

Santtare States

Direct-coapled CCD-based detectors

An early model is this one from Argonne, used at NSLS X14 in 1992.

The light chain:

- Phosphor converter
- 43 x 43 mm to 25 x 25mm fibre-optic taper
- 25 mm square 1,024

Direct-coupled CCD-based detector from Princeton

The first such detector "permanently" installed at a synchrotron beamline, Spring 1993

The light chain:

- Gd₂O₂S:Tb phosphor
- 50 x50 mm to 20 x 20mm fibre-optic taper (2.6:1 ratio)
- 1024 x1024 pixel CCD chip

The Brandeis 2x2 array (The B4) has been used for many large unit-cell projects

The pattern here reveals a 720Å spacing from the cytochrome bc1 complex. This sort of problem exemplifies the need to resolve many orders across the face of the detector.

The most successful commercial vendor of this sort of detector is Area Detector Systems Corp.

he four-module Quantum-4 detector, by ADSC, is in use at NSLS X12-B.

ADSC are attempting to push the state of this art with their Quantum 315

Active area: 315mm square Number of pixels: 6k square Pixel size: 51 x 51 microns Spatial resolution FWHM: 90 microns, possibly 200 microns at 1%

Taper ratio: 3.7 to 1 CCD type: 2k x 2k Readout times (no data collected!): (Full Resolution): 1 second

(2x2 binned): 330 ms
Dark current (@-50C): 0.002 Xph/pixel/sec
Read Noise: (1 MHz pixel rate): ~2 Xph
Full well: ~30.000 Xph/px

S------- S-----

If this is the state of the art, what do we need?

Spatial resolution: Typical diffraction-spot sizes from new synchrotrons are on the order of 100-200 microns.

• Sampling: We need to sample these 2-3 times to see the profile. 50 microns is good.

• Spreading: No spread is good. Wings of spread should fall quickly. Want < 1 Pixel

Dynamic range, Maximum count rate:

These detectors are "integrating" detectors, so counting "rate" doesn't really mean anything.

For a REALLY big spot, a detector at an APS undultor beamline sees about 100,000Xph/s in the central pixel. This is beyond the well depth of existing detectors. Nonetheless, one might hope for a maximum count rate of 106 Xph/px/s

The x-ray background in that pattern may be 20-100 Xph/s. A $dynamic\ range$ in the scale of 30-50,000 is appropriate.

Given a finite well depth, the maximum count rate then depends on the framing rate.

Sandleren Ballery

What about read-out speed?

Detector dead time:

- Would like this to be as small as possible.
- With double buffering this could be zero

Maximum framing rate:

- Don't need more than ~3000 Xph in a typical peak to integrate well.
- May need to frame every few tenths of a second with a bright beam or very much faster for special cases.

Series Series

Maximum number of orders:

One would like always to work in "normal-beam" mode to use the top and bottom of the detector equally.

Biologists' wildest fantasies might suggest 1000 Å unit cell size at 2 Å resolution:

- 500 orders above and below the beamstop, or 1000 orders total.
- One needs 3-4 pixels to sample a spot profile, 2-3 pixels to measure background.
- Say 6 px/reflection, or 6000 resolution elements.

Remember that the useful width sampled by a group of n pixels is n times the width of each pixel plus the point-spread function of one pixel at about 1% of maximum.

matiana Biology

A challenge for detector builders is Laue photography

This method can be used for kinetic crystallography, to capture states in a reaction pathway.

S...... S......

The Laue patterns are almost fractal; the detail can be very fine.

The intensity is limited by the spectral brightness of the source, but microsecond framing could be useful.

ورها استفسا

Requirements for an Improved Detector for Macromolecular Crystallography

Property	What we'd like	What we have
Pixel Size	50 μm	50 μm
Point Spread	<1 pixel	90/200
Dynamic range	50,000	30-50,000
Maximum count rate	106 Xph/px/s	~105 Xph/px/s
Detector dead time	near zero	0.3 sec
Shortest framing time	a few tenths of a second	0.3 sec
Number of diffraction orders	1000	500-600

Sentium States